• Temperature, Pressure and Level Switches Now with SIL2 Approval

    Measurement and testing

    Temperature, Pressure and Level Switches Now with SIL2 Approval

    Impress Sensors and Systems (UK) is now offering a range of temperature limiters/controllers, pressure transmitters, screwin transmitters, submersible probes and level control switches, all with SIL2 (Safety Integrity Level 2) approval for hazardous environments. The new range is targeted at safety and hazardous area applications, including process manufacturers, chemicals, oil and gas, nuclear and atomic weapons establishments. The devices are also suitable for medical
    device applications.
    The process industry demands the highest degree of safety and reliability these days. The current Safety Integrity Level (SIL)
    international safety standard provides suppliers and users with
    a common framework on which to design products and systems for safety related applications. The standard also provides a more scientific, numerical approach to specifying and designing safety systems, enabling the nature of the risk to be quantified SIL means risk reduction to a tolerable level. The required safety level of a process plant is classified in accordance with the international IEC 61 511 standard and depends on the risk constituted by a plant. The IEC 61 508 standard describes the requirements of electrical, electronic and programmable electronic devices used in such plants. Both standards subdivide plants and devices into 4 safety levels, from SIL1 for low risks, to SIL4 for very high risks. The allocation to these safety levels is based on the use of a risk graph and depends on; extent of possible damage, frequency
    of persons present in hazardous areas, possibility of damage prevention and probability of an unwanted event occurring.
    The standards also describe the type of risk assessment and procedures for integrating certain safety functions into sensors and plants. Generally, the significant hazards for equipment and any associated control system have to be identified by the specifiers or developers via a hazard analysis. The analysis identifies whether functional safety is necessary to ensure adequate protection against each significant hazard.
    Examples within safety related systems for mechanical engineering include auxiliary disconnected systems; fire detector and gas warning systems; monitoring of turbines; safety interlock and auxiliary disconnected systems for machines; devices for medical applications; and remote monitoring based on network, handling and programming of
    procedural constructions.

    Digital Edition

    PIN 26.1 Feb/Mar 2025

    March 2025

    Analytical Instrumentation - Elemental Analysis for Quality and Process Control at Refineries, for Lubricants and Wear Metals in Engine Oils - Synthetic Lubricants: New Developments - Scaling...

    View all digital editions

    Events

    WPC 2025

    Mar 17 2025 Houston, TX, USA

    NGVS 2025

    Mar 18 2025 Beijing, China

    Water Philippines

    Mar 19 2025 Manila, Philippines

    Laborama 2025

    Mar 20 2025 Brussels, Belgium

    FLOWEXPO

    Mar 20 2025 Guangzhou, China

    View all events