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Abstract 

A project has been undertaken to assess how to reduce the amount of 

effort devoted to maintaining and optimizing spectroscopic model 

performance in support of refinery and chemical plant labs. Over the 

last five years, a series of algorithmic approaches have been examined 

with the goal of streamlining the process of chemometric model 

construction to make the models significantly more robust when put 

into routine practice. This effort generated the following observations: 

1. Even though there are published “Best Practices” for generating 

chemometric models, these practices are infrequently followed; 

2. Recalibration of an optical spectrometer is perceived to be warranted due 

to changes in crude slates and blending component composition, but may 

not be required; 

3. Even if a calibration was performed properly during initial installation, 

staffing changes and lack of training undermines subsequent recalibrations; 

and 

4. It is of benefit to minimize software maintenance frequency to control 

product giveaway. 
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Abstract, continued 

In order to use optical analyzers effectively, the analyst needs to 

consider the limitations that ultimately determine the eventual success 

and life-expectancy of any calibration. There are many areas that have 

an impact on the ultimate quality of a chemometrics calibration: outlier 

detection, selection of the number of factors, and even choice of 

algorithm. This presentation reports on a multi-organization effort 

leading to an improvement in calibration procedures for on-line and 

laboratory multiwavelength spectrometers. Here the process of 

calibration is examined in detail and a path is outlined for building 

calibrations that are more reliable and less sensitive to process shifts. 

Much of this improvement can be attained without requiring 

replacement of either the hardware or software in place. Additional 

improvement in calibration quality is available through the use of well-

referenced methods that constitute the best technologies available. 
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38 Years of Chemometrics 

What problems do we see that create the most 

problems in building a chemometric system? 

1. Poorly characterized standards 

2. Groupings in the data 

3. Overfitting the inferential model 

4. Non-optimal calibration set 

5. Changing protocol 

6. Complex samples 

7. Poor instrument stability 
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Analytical Chemistry Basics - 1 

When looking at an analyzer technology for a specific 

application, you need to first look at the sources of 

variation, typically instrumental and process (from the 

feedstock and the process parameters themselves). 
 

You would like to try for “Hard Models” as they will be 

more stable over time, but often, instruments designed to 

work with Soft Modeling techniques are favored as, in the 

case with optical spectroscopy, they can often provide 

their measurements more quickly. 
 

The penalty you pay for Soft Models is that they will 

require more frequent recalibration. 
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Analytical Chemistry Basics - 2 

• What is a Hard Model? 

– GC for natural gas: separate all of the components, look up the 

associated heat of combustion for each of the components, multiply 

and add to get BTU content 

– Hydroxyl value of polyurethane polyol prepolymers 

• What is a Soft Model? 

– Application of NIR on natural gas samples representing different 

compositions: measure the BTU content of the gases as a whole 

using a reference method; apply PLS to calibrate the NIR response 

to the reference 

– Inferential 

• Inferential models employ chemometrics, but not all 

chemometric models are inferential 
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Consider … 

• New colleague says ‘Hey, I live near you; how long does 

it take to get to work?” 

• You answer “Today it took me 45 minutes, but there 

was an accident. Yesterday was a breeze; left a little 

early and I made all the lights and got here in 20.” 

• But, Fridays you stop for donuts, Thursdays you usually 

fill the tank, and sometimes you drop your kids off along 

the way; there’s always something. 

• So, what is the real driving time?  
– It depends on many factors 

– We can develop some feeling by getting multiple measures, over a 

period of time 

– A single day’s result is not necessarily indicative of future expectation 
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Building an understanding of Error 
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Building an understanding of Error 
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20        24        28        32        36        40        44        48 

Reference Values = Driving Time 
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Reference Values = Octane Rating 
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Sources of Error in All Chemometric 

Models Built for Spectrometers 

• Reference Error 

– The reference method is not perfect 

– Nevertheless, it is considered to be true (accurate) 

– Error assessed in terms of precision and/or 

reproducibility 

• “Spectrometric” Error 

– Instrument error + error in chemometric model 

– Not perfect 

– Precision is typically much better than reference 

method 
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Understanding RMSEP 

How are Reference Error, Spectrometric Error, and 

RMSEP related? 

 

   RMSEP =     (RefError2 + SpectrometricError2) 

 

Two examples to illustrate 

• Example A looks at a single sample 

• Example B considers a population of samples 
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Case A1 

Reference and Spectrometric Error are Similar 

• v 
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Case A2 

Spectrometric Error reduced 
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Case A3 

Spectrometric Error reduced further… 
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Case A4 

…and further… 
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Case A5 

…and further… 
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Case A6 

…and further… 
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Case A7 

…and further… 
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Case A8 

…and further… 
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Case A9 

…until the Spectrometric Error is zero 
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Case B1 
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Case B2 
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Spectrometric Error decreases by ~1/3,  RMSEP decreases by < 1/3 
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Case B3 
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Case B4 
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Case B5 

25 
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Spectrometric Error reduced by ~50% vs Case B4, little effect on RMSEP 
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Case B6 
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Spectrometric Error is zero, RMSEP equals Reference Error 
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RMSEP is Limited by Reference Error 

At Spectrometric Error = 0, the incorrect conclusion is that 

“the model cannot be better than the reference method” 

 27 

… as Spectrometric  

Error approaches zero 

Spectrometric Error 

Total system error (RMSEP) 

approaches the Reference  

Error value … 

T
o

ta
l 

E
rr

o
r 

(R
M

S
E

P
) 



In
fo

m
e
tr

ix
 

Model Construction Issues 
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Distribution appears 

to be biased low 

Groupings in the data 

A clear case of not handling the data properly 
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Segmented Predictions 

• When samples do not group into a single homogeneous 

cluster, breaking the calibration problem into multiple 

regressions might improve the overall prediction quality.  

• In the case of motor fuel properties, the chemical 

composition of sub-grade and super-grade fuels is 

sufficiently different that a hierarchical, or segmented, 

approach could be attempted: 

– Use one model to classify the grade 

– Use a second model, one for each category found by the first 

model, to determine the quality rating 
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Sub- and Super-Grade Fuels 
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range that is being modeled and can provide a better model and 
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Comparison of Octane Models 

• For the data set that includes both grades, the standard error of 

cross validation for RON is 0.22 and for MON is 0.25.   

• If we build a model for the two ranges of octane measurements 

separately, there is just a small change in the evaluation of sub-

grade gasoline, but there is a significant drop in the error associated 

with premium. 
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All Samples Subgrade Premium 

RON 0.22 0.22 0.15 

MON 0.25 0.23 0.20 
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Result: a More Parsimonious Model 

• Looking at several properties, the value of integrating readily-

available information improves the fuel property assessment 

considerably. 

• Note that the number of factors required to build the PLS model is 

significantly reduced and likely provides more stability over time. 
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SECV Factors SECV Factors SECV Factors

Aro 0.87 7 0.76 3 0.84 2

Ole 0.58 7 0.57 4 0.32 4

RON 0.23 7 0.22 5 0.15 3

MON 0.24 7 0.23 5 0.20 5

Benz 0.04 8 0.02 5 0.02 4

IBP 1.99 7 1.83 3 1.55 6

d50 1.54 8 0.98 7 1.18 4

d90 3.69 9 3.66 4 1.65 4

PremiumSubgradeAll Samples
Outliers Removed Outliers Removed Outliers Removed
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Choosing Best # of Factors 
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Avoiding Overfitting 

• As more factors are added 

– calibration error is reduced 

– noise variation in the training data are built into the 

model 

• Prediction data will have different noise; after all, noise 

is random 

• A model with more factors than necessary will try to 

apply the noise portion of the model to prediction 

samples – and fail – resulting in increased error 
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Noise added to mean spectrum 

Noise, std dev = 35 Mean spectrum + noise 
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Impact of Noise on Predictions 
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Avoiding Overfitting 2 

• As more factors are added 

– calibration error is reduced 

– information from interferent not correlated to 

property may be added to model 

• Prediction data will have different levels of interferent 

• A model with more factors than necessary will try to 

apply the uncorrelated portion of the model to 

prediction samples – and fail – resulting in increased 

error 
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Addition of a Small Perturbation 

Added peak intensity:  1,000 to 10,000 
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Overfitting’s Impact on Predictions 

Relative Magnitude of Perturbation 
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Jaggedness for Model Complexity 

• SECV may not always indicate optimal number 

of factors for a regression model 

• Regression vector usually shows noise 

structure overlay when overfitting 

• Quantify regression vector ‘shape’  

Jaggedness 
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Jaggedness Demonstrated 
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Calibration Spectra 

Jaggedness 

Regression Vector 

SECV 
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PLS Model Has Outliers 
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First PLS Model 

Use diagnostics 

to flag outliers 

RMSECV = 0.55 
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Second PLS – Additional Outliers 
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Second PLS Model 

Use diagnostics 

to flag outliers 

RMSECV = 0.23 
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Robust PLS – Just One Pass 
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First PLS Model 

Use diagnostics 

to flag outliers 

RMSECV = 0.55 
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Robust Model – No More Outliers 
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Robust PLS Model 

Use diagnostics 

to flag outliers 

RMSECV = 0.12 
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38 Years of Chemometrics 

What problems do we see that create the most 

problems in building a chemometric system? 

1. Poorly characterized standards 

2. Groupings in the data 

3. Overfitting the inferential model 

4. Non-optimal calibration set 

5. Changing protocol 

6. Complex samples 

7. Poor instrument stability 
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