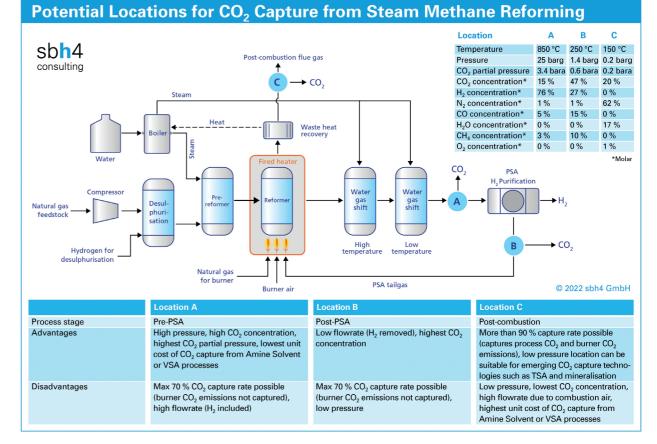
SMR HYDROGEN YIELD IMPROVEMENT AND CO₂ EMISSIONS REDUCTION USING CRYOGENICS


Refinery at Port Jerome sur Seine, France

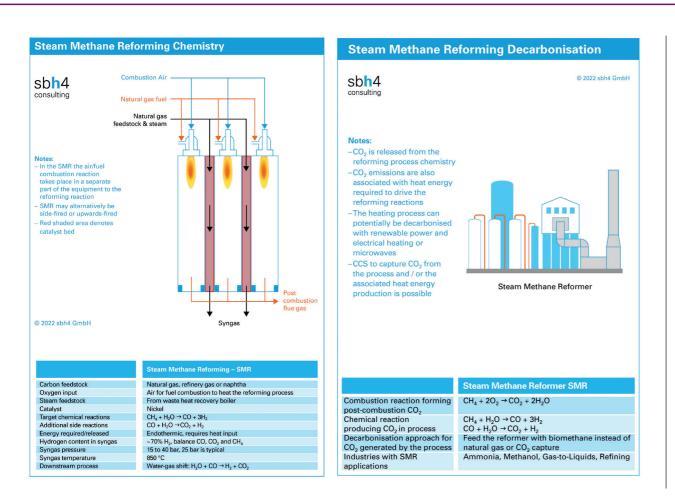
Much has been said about CCS – carbon capture and storage. The need to decarbonise is clear. Renewable power generation and green hydrogen may do much of the heavy lifting when they scale up in coming decades, but there are many steam methane reformers (SMRs) existing on refineries that must also be decarbonised.

S team methane reforming of natural gas, refinery gas or naphtha feedstocks is the most common process to produce hydrogen is. When these fossil fuels are used to generate hydrogen without capturing the CO₂ emissions, it is called 'grey' hydrogen. If most of the CO₂ from the SMR is captured, the hydrogen is referred to as 'blue'.

 CO_2 is released from the SMR in two locations, firstly as the feedstock is transformed to hydrogen, CO_2 is produced within the process as a by-product. This is an unavoidable consequence of this chemical pathway. The second source of CO_2 emissions are from the combustion of fossil fuels, generally the same natural gas feedstock, to create the heat that is required to drive the reforming chemical reactions that convert the feedstock to hydrogen.

 CO_2 capture from steam methane reformers (SMRs) is often regarded as a 'quick-win' in the decarbonisation of industrial processes. The CO_2 concentration, pressure, and partial pressure in the SMR process gas is high. This leads to cost-effective CO_2 capture. Furthermore, CO_2 has been captured from SMRs for decades so that the CO_2 can be used to make urea fertilizer, when reacted with ammonia that is produced from hydrogen made on the SMR. There is therefore a wealth of experience to leverage. Seine in France, showed that an additional 12% hydrogen yield from the SMR is achievable using the Cryocap[™] H2 process. This can have a tremendous positive impact on operational economics and can help to fund the investment in the Cryocap[™] H2 equipment.

SMR at Port Arthur, Image courtesy of Air Products and Chemicals Inc


The use of cryogenics to capture and purify CO_2 from SMRs is likely to be the next milestone in the development of CO_2 capture from these units. The CryocapTM H2 process from Air Liquide combines cryogenic separation of CO_2 from the SMR process gas stream with membrane separation of hydrogen.

A demonstration project at an SMR in Port Jérôme, on the river

With Cryocap[™] H2 directing more hydrogen to the product stream, there is less hydrogen available for the SMR fired heater, so additional natural gas is required to compensate for the reduced heat energy available. However, the additional hydrogen production can more than offset the cost of the additional natural gas.

If liquid CO_2 is required for food and beverage applications, additional CO_2 purification is required. In the CryocapTM H2 process, oxygen is added to react with hydrogen in the CO_2

PIN February / March 2023

stream to produce water using catalytic oxidation. The water is then removed on regenerative dryer adsorption beds. Excess oxygen is separated from the liquid CO_2 using cryogenic distillation. Mercury removal is a final polishing stage which is achieved on an activated carbon filter bed.

 CO_2 liquefaction is achieved using a heat exchanger to condense CO_2 gas. The cold side of the heat exchanger is generally fed with a refrigerant gas from a typical mechanical refrigeration circuit. Electrical power is required to operate the refrigeration equipment, so the process can be decarbonised using renewable electricity.

The CO_2 side of the liquefaction circuit is operated at a pressure of 15 to 25 bar. At elevated pressure, common refrigerant gases such as $CO_{2'}$ ammonia or F-Gases can be used to achieve the temperature required to liquefy the CO_2 .

As an alternative to mechanical refrigeration, ammonia absorption refrigeration can be used. This process avoids the mechanical compression of a refrigerant gas and derives the cold energy instead from the absorption and desorption of ammonia in water. To drive the ammonia out of the water, heat energy is required. If waste heat is available, this process can be more efficient than mechanical refrigeration.

After liquefaction, CO_2 is stored and transported in tanks which are insulated to minimise boil off. Typically, liquid CO_2 storage tanks are constructed of carbon steel and insulated with polyurethane foam. Often, a refrigeration unit is used to re-liquefy boiled off CO_2 . This avoids CO_2 losses and overpressurisation of the CO_2 storage tank.

Author Contact Details

Stephen B. Harrison • sbh4 GmbH • Address: Kranzlstraße 21, 82538 Geretsried, Germany • Tel: +49 (0)8171 24 64 954

• Email: sbh@sbh4.de • Web: www.sbh4.de

Read, Print, Share or Comment on this Article at: petro-online.com/Article

World's first hands-free, voice-controlled thermal camera

RealWear's innovative Thermal Camera module connects seamlessly with RealWear NavigatorTM Series headsets, includes radiometric FLIRLepton® and is the only device that supports MSX® technology to enable frontline industrial professionals to conduct inspections, enhance remote support sessions and avoid equipment downtime using simple voice commands

"RealWear Navigator head-mounted devices, with its revolutionary modular design, continues to gain support with Global 1000 companies as the new gold standard in assisted reality. The compelling option to add thermal image capture without occupying your hands in hazardous environments gives frontline professionals more real-time information to do their jobs safely and productively," said Rama Oruganti, Chief Product Officer at RealWear. "By combining **Teledyne FLIR's** thermal expertise with RealWear's best-in-class voice-driven wearables through its Thermal by FLIR program, we're creating a digital tool with extended capabilities for the modern frontline worker."

"As a XR wearable evangelist for Honda, the idea of leveraging the modular design of RealWear Navigator 500 is a no-brainer," said Greg Cooper, Innovation Engineer, Manufacturing, American Honda Motor Company. "A fully hands-free thermal camera will give our technicians another superpower to get the job done fast. For example, a hands-free fully voice-controlled thermal enables us to immediately show what we're doing to address airlocks and ventilation leaks to the reliability team to give them the confidence that our engines and systems are reliable and meet our highquality standards."

Imagery is viewable in real time and will in the future have the ability to be shared via Microsoft Teams, Zoom, Webex Expert on Demand, among others. Compatible with Teledyne FLIR's ecosystem, the special radiometric JPEG format images can be stored, transmitted, and downloaded for use within the FLIR Thermal Studio post-processing software for greater analysis and reporting options.

"Thermal imaging is critical to assembly, effective condition monitoring and predictive maintenance programs," said Dan Jarvis, Sr. Director Business Development Teledyne FLIR. "RealWear Navigator 500 is the only hands-free system to currently incorporate the FLIR Lepton and patented MSX technology, which overlays the live edge detail from the visible camera on the thermal image to provide critical information."

Key use cases of RealWear Navigator with thermal include electrical, mechanical, plumbing, HVAC inspections along with initial installation readiness, process monitoring or line monitoring where a connected hands-free device adds flexibility, safety, and overall efficiency for optimum plant production such as automotive assembly line processes.

"Our long-term vision of assisted intelligence takes shape when you start connecting new captured data like thermal imaging into the cloud and beyond," continued Oruganti. "Industrial wearables have a huge role to play going forward in industry 4.0, and we're proud to be a part of the global movement."

For More Info, email: <u>59171pr@reply-direct.com</u>

